China supplier 304 Stainless Steel Helical Gear 1 Module 1.5 Module 45 Degree Staggered Axis Helical Gear 13 Teeth 15 Teeth 20 Teeth cycle gear

Product Description

Name: Helical Gear
Material: Stainless Steel
Product model: 1/1.5 Module
Fix method: Fixed screw
MOQ: 1
High strength: Yes
Long Life: Yes

Flat tooth gear pinion: Materail(carbon steel,copper,42Crm,plastics,stailness steel,Aluminum,iron)
0.1Mod,0.2Mod,0.3Mod,0.4Mod,0.5Mod,0.6Mod,0.7Mod,0.8Mod,0.9Mod1Mod,1.5Mod,1.25Mod,2Mod,2.5Mod,3Mod,3.5Mod,4Mod,5Mod,6Mod,7Mod,8Mod,9Mod,10Mod
11Mod,12Mod,13Mod,14Mod,15Mod,16Mod,17Mod,18Mod,19Mod,20Mod
Spur with step tooth gear pinion: Materail(carbon steel,copper,42Crm,plastics,stailness steel,Aluminum,iron)
0.1Mod,0.2Mod,0.3Mod,0.4Mod,0.5Mod,0.6Mod,0.7Mod,0.8Mod,0.9Mod1Mod,1.5Mod,1.25Mod,2Mod,2.5Mod,3Mod,3.5Mod,4Mod,5Mod,6Mod,7Mod,8Mod,9Mod,10Mod
11Mod,12Mod,13Mod,14Mod,15Mod,16Mod,17Mod,18Mod,19Mod,20Mod
Left Helical Flat tooth gear pinion: Materail(carbon steel,copper,42Crm,plastics,stailness steel,Aluminum,iron)
0.1Mod,0.2Mod,0.3Mod,0.4Mod,0.5Mod,0.6Mod,0.7Mod,0.8Mod,0.9Mod1Mod,1.5Mod,1.25Mod,2Mod,2.5Mod,3Mod,3.5Mod,4Mod,5Mod,6Mod,7Mod,8Mod,9Mod,10Mod
11Mod,12Mod,13Mod,14Mod,15Mod,16Mod,17Mod,18Mod,19Mod,20Mod
Left Helical Spur with step tooth gear pinion: Materail(carbon steel,copper,42Crm,plastics,stailness steel,Aluminum,iron)
0.1Mod,0.2Mod,0.3Mod,0.4Mod,0.5Mod,0.6Mod,0.7Mod,0.8Mod,0.9Mod1Mod,1.5Mod,1.25Mod,2Mod,2.5Mod,3Mod,3.5Mod,4Mod,5Mod,6Mod,7Mod,8Mod,9Mod,10Mod
11Mod,12Mod,13Mod,14Mod,15Mod,16Mod,17Mod,18Mod,19Mod,20Mod
Right Helical Flat tooth gear pinion: Materail(carbon steel,copper,42Crm,plastics,stailness steel,Aluminum,iron)
0.1Mod,0.2Mod,0.3Mod,0.4Mod,0.5Mod,0.6Mod,0.7Mod,0.8Mod,0.9Mod1Mod,1.5Mod,1.25Mod,2Mod,2.5Mod,3Mod,3.5Mod,4Mod,5Mod,6Mod,7Mod,8Mod,9Mod,10Mod
11Mod,12Mod,13Mod,14Mod,15Mod,16Mod,17Mod,18Mod,19Mod,20Mod
Right Helical Spur with step tooth gear pinion: Materail(carbon steel,copper,42Crm,plastics,stailness steel,Aluminum,iron)
0.1Mod,0.2Mod,0.3Mod,0.4Mod,0.5Mod,0.6Mod,0.7Mod,0.8Mod,0.9Mod1Mod,1.5Mod,1.25Mod,2Mod,2.5Mod,3Mod,3.5Mod,4Mod,5Mod,6Mod,7Mod,8Mod,9Mod,10Mod
11Mod,12Mod,13Mod,14Mod,15Mod,16Mod,17Mod,18Mod,19Mod,20Mod
Bevel Gear : Materail(carbon steel,copper,42Crm,plastics,stailness steel,Aluminum,iron)
0.1Mod,0.2Mod,0.3Mod,0.4Mod,0.5Mod,0.6Mod,0.7Mod,0.8Mod,0.9Mod1Mod,1.5Mod,1.25Mod,2Mod,2.5Mod,3Mod,3.5Mod,4Mod,5Mod,6Mod,7Mod,8Mod,9Mod,10Mod
11Mod,12Mod,13Mod,14Mod,15Mod,16Mod,17Mod,18Mod,19Mod,20Mod
Helical Bevel Gear : Materail(carbon steel,copper,42Crm,plastics,stailness steel,Aluminum,iron)
0.1Mod,0.2Mod,0.3Mod,0.4Mod,0.5Mod,0.6Mod,0.7Mod,0.8Mod,0.9Mod1Mod,1.5Mod,1.25Mod,2Mod,2.5Mod,3Mod,3.5Mod,4Mod,5Mod,6Mod,7Mod,8Mod,9Mod,10Mod
11Mod,12Mod,13Mod,14Mod,15Mod,16Mod,17Mod,18Mod,19Mod,20Mod

Product Description

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Samples:
US$ 5.15/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

helical gear

What is the purpose of using helical gears in power transmission?

Helical gears are commonly used in power transmission systems for various purposes. Here’s a detailed explanation of the purpose and advantages of using helical gears in power transmission:

  • Smooth and Efficient Power Transfer: One of the primary purposes of using helical gears in power transmission is to achieve smooth and efficient transfer of power. The inclined tooth profile of helical gears allows for gradual and continuous engagement of teeth, minimizing shock loads and ensuring a more uniform distribution of force. This results in smoother power transmission with reduced noise, vibration, and wear.
  • High Torque Transmission: Helical gears are known for their high torque-carrying capacity. The inclined teeth of helical gears enable a larger tooth contact area compared to other gear types such as spur gears. This increased tooth contact area allows helical gears to transmit higher torque, making them suitable for applications that require the transfer of large amounts of power, such as in industrial machinery, automotive drivetrains, and heavy-duty equipment.
  • Variable Speed Ratios: Helical gears can be designed with different numbers of teeth and varying helix angles, allowing for a wide range of speed ratios. By selecting the appropriate combination of gears, the rotational speed and torque can be adjusted to meet the requirements of the power transmission system. This flexibility in speed ratios makes helical gears versatile in applications where variable speed control is necessary.
  • Reduction of Noise and Vibration: The inclined tooth profile and gradual engagement of helical gears contribute to the reduction of noise and vibration in power transmission systems. Compared to spur gears, helical gears generate less noise and vibration due to their smoother meshing characteristics and improved load distribution. This makes helical gears particularly beneficial in applications where noise reduction and smooth operation are important considerations, such as in automotive transmissions and precision equipment.
  • Compact Design: Helical gears can achieve high gear ratios within a relatively compact design. The inclined teeth of helical gears allow for more teeth to be in contact at any given time, enabling a higher gear ratio compared to spur gears of the same size. This compactness is advantageous when there are space constraints or when a smaller gear mechanism is desired without sacrificing performance or torque capacity.
  • High Reliability and Durability: Helical gears are designed to distribute the load over multiple teeth, resulting in improved load-carrying capacity and enhanced gear strength. The inclined tooth profile allows for a larger contact area, reducing stress concentrations and increasing the gear’s resistance to wear and fatigue. These factors contribute to the high reliability and durability of helical gears, making them suitable for demanding power transmission applications that require long service life.

In summary, the purpose of using helical gears in power transmission is to achieve smooth and efficient power transfer, high torque transmission, variable speed control, noise and vibration reduction, compact design, and high reliability. These advantages make helical gears widely used in various industries, including automotive, manufacturing, energy, and many other applications that require reliable and efficient power transmission.

helical gear

How do you retrofit an existing mechanical system with helical gears?

Retrofitting an existing mechanical system with helical gears involves replacing the current gear system with helical gears to improve performance, efficiency, or address specific requirements. The process requires careful planning, analysis, and implementation to ensure a successful retrofit. Here is a detailed explanation of how to retrofit an existing mechanical system with helical gears:

  1. Assess the Existing System: Begin by thoroughly assessing the existing mechanical system. Understand its design, operating conditions, gear specifications, and performance limitations. Identify the reasons for retrofitting, such as the need for increased load capacity, improved efficiency, noise reduction, or other specific requirements.
  2. Define Retrofit Objectives: Clearly define the objectives of the retrofit. Determine the specific improvements or modifications desired from the retrofit. This could include increasing torque capacity, reducing backlash, improving gear meshing characteristics, or optimizing gear ratios. Having well-defined objectives will guide the retrofitting process.
  3. Perform Gear Design and Analysis: Based on the defined objectives, conduct gear design and analysis to determine the appropriate helical gear configuration. Consider factors such as gear size, tooth profile, helix angle, module or diametral pitch, and gear material. Use engineering calculations, software simulations, or consult with gear design experts to ensure the selected helical gears meet the retrofit objectives and are compatible with the existing system.
  4. Modify Gear Housing and Mounting: In some cases, retrofitting with helical gears may require modifications to the gear housing or mounting arrangements. Ensure that the gear housing can accommodate the helical gears and provide proper alignment and support. Modify or adapt the housing as necessary to ensure a precise fit and alignment of the new gear system.
  5. Manufacture or Source Helical Gears: Once the gear design is finalized, manufacture or source the helical gears according to the specifications determined during the design phase. Work with experienced gear manufacturers or suppliers who can provide high-quality helical gears that meet the required specifications and performance criteria.
  6. Installation and Alignment: Remove the existing gears and install the helical gears in the mechanical system. Ensure proper alignment of the gears to maintain smooth operation and minimize wear. Follow recommended installation procedures and torque specifications provided by the gear manufacturer. Consider using alignment tools, such as dial indicators or laser alignment systems, to achieve precise gear alignment.
  7. Test and Fine-tune: After installation, conduct thorough testing of the retrofit system. Monitor performance, check for any abnormal vibrations, noise, or operating issues. Fine-tune the system as needed, making adjustments to gear meshing, lubrication, or other parameters to optimize performance and ensure the retrofit objectives are met.
  8. Monitor and Maintain: Once the retrofit is complete, establish a regular monitoring and maintenance schedule. Periodically inspect the helical gears for wear, perform lubrication checks, and address any maintenance requirements. Regular monitoring and maintenance will help ensure the longevity and optimal performance of the retrofit system.

Retrofitting an existing mechanical system with helical gears can significantly enhance its performance, efficiency, and reliability. However, it is essential to carefully plan and execute the retrofitting process to achieve the desired outcomes. Consulting with gear design experts and experienced professionals can provide valuable guidance and expertise throughout the retrofitting process.

helical gear

What are the benefits of using a helical gear mechanism?

A helical gear mechanism offers several benefits that make it a preferred choice in many applications. Here’s a detailed explanation of the advantages of using a helical gear mechanism:

  • Smooth and Quiet Operation: Helical gears are designed with angled teeth that gradually engage and disengage during rotation. This gradual engagement reduces noise and vibration, resulting in smoother and quieter operation compared to other gear types such as spur gears. The continuous contact between the teeth also helps in distributing the load more evenly, reducing the risk of concentrated wear or damage.
  • High Load-Carrying Capacity: The inclined teeth of helical gears allow for greater tooth engagement compared to spur gears. This increased tooth contact area results in improved load distribution and higher load-carrying capacity. Helical gears can transmit higher torque and handle heavier loads, making them suitable for applications that require high power transmission and torque transfer.
  • Efficient Power Transmission: The inclined tooth profile of helical gears enables smooth and efficient power transmission. The gradual engagement of teeth minimizes shock loads and ensures a continuous transfer of power without sudden jolts or interruptions. This efficiency is particularly beneficial in applications where precise motion control, energy efficiency, and smooth acceleration are required.
  • Versatility and Adaptability: Helical gears can be manufactured in various configurations to suit different application requirements. They can be designed as parallel helical gears for transmitting power between parallel shafts, double helical gears (herringbone gears) for balancing axial thrust, crossed helical gears (screw gears) for non-parallel and non-intersecting shafts, and other specialized variations. This versatility allows for a wide range of gear arrangements and applications.
  • Improved Tooth Strength: The helical tooth profile provides better tooth strength compared to spur gears. The inclined teeth distribute the load over a larger contact area, reducing stress concentrations and enhancing the gear’s resistance to wear, pitting, and tooth breakage. This improved tooth strength contributes to the overall durability and longevity of the gear mechanism.
  • Compact Design: Helical gears can achieve a high gear ratio in a relatively compact design. The inclined teeth allow for more teeth to be in contact at any given time, enabling a higher gear ratio within a limited space. This compactness is advantageous when there are size constraints or when a smaller gear mechanism is desired without sacrificing performance.
  • High Efficiency: Due to their smooth operation and improved tooth engagement, helical gears offer high mechanical efficiency. They minimize power losses caused by friction, heat generation, and vibration, resulting in efficient power transmission. The high efficiency of helical gears is particularly beneficial in applications where energy conservation and reduced operating costs are important considerations.

In summary, the benefits of using a helical gear mechanism include smooth and quiet operation, high load-carrying capacity, efficient power transmission, versatility, improved tooth strength, compact design, and high mechanical efficiency. These advantages make helical gears suitable for a wide range of applications, including automotive transmissions, industrial machinery, power generation equipment, robotics, and more.

China supplier 304 Stainless Steel Helical Gear 1 Module 1.5 Module 45 Degree Staggered Axis Helical Gear 13 Teeth 15 Teeth 20 Teeth cycle gearChina supplier 304 Stainless Steel Helical Gear 1 Module 1.5 Module 45 Degree Staggered Axis Helical Gear 13 Teeth 15 Teeth 20 Teeth cycle gear
editor by Dream 2024-05-16

Tags:

Helical Gear

As one of the leading helical gear manufacturers, suppliers, and exporters of mechanical products, We offer helical gear and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of helical gear.

Recent Posts